

Water Indicators

Indicator	Value	Description	Source
Overall Basin Risk (score)	1.93	Overall Basin Risk (score)	
Overall Basin Risk (rank)	188	Overall Basin Risk (rank)	
Physical risk (score)	1.95	Physical risk (score)	
Physical risk (rank)	170	Physical risk (rank)	
Regulatory risk (score)	1.59	Regulatory risk (score)	
Regulatory risk (rank)	168	Regulatory risk (rank)	
Reputation risk (score)	2.21	Reputation risk (score)	
Reputation risk (rank)	168	Reputation risk (rank)	
1. Quantity - Scarcity (score)	1.49	1. Quantity - Scarcity (score)	
1. Quantity - Scarcity (rank)	166	1. Quantity - Scarcity (rank)	
2. Quantity - Flooding (score)	3.07	2. Quantity - Flooding (score)	
2. Quantity - Flooding (rank)	100	2. Quantity - Flooding (rank)	
3. Quality (score)	1.65	3. Quality (score)	
3. Quality (rank)	164	3. Quality (rank)	
4. Ecosystem Service Status (score)	2.35	4. Ecosystem Service Status (score)	
4. Ecosystem Service Status (rank)	100	4. Ecosystem Service Status (rank)	
5. Enabling Environment (Policy & Laws) (score)	1.45	5. Enabling Environment (Policy & Laws) (score)	
5. Enabling Environment (Policy & Laws) (rank)	159	5. Enabling Environment (Policy & Laws) (rank)	
6. Institutions and Governance (score)	1.50	6. Institutions and Governance (score)	
6. Institutions and Governance (rank)	184	6. Institutions and Governance (rank)	
7. Management Instruments (score)	2.14	7. Management Instruments (score)	
7. Management Instruments (rank)	144	7. Management Instruments (rank)	
8 - Infrastructure & Finance (score)	1.10	8 - Infrastructure & Finance (score)	
8 - Infrastructure & Finance (rank)	174	8 - Infrastructure & Finance (rank)	
9. Cultural Diversity (score)	1.00	9. Cultural importance (score)	
9. Cultural Diversity (rank)	192	9. Cultural importance (rank)	
10. Biodiversity Importance (score)	4.00	10. Biodiversity importance (score)	

Indicator	Value	Description	Source
10. Biodiversity Importance (rank)	54	10. Biodiversity importance (rank)	
11. Media Scrutiny (score)	2.00	11. Media Scrutiny (score)	
11. Media Scrutiny (rank)	189	11. Media Scrutiny (rank)	
12. Conflict (score)	2.51	12. Conflict (score)	
12. Conflict (rank)	96	12. Conflict (rank)	
1.0 - Aridity (score)	1.03	The aridity risk indicator is based on the Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial data sets by Trabucco and Zomer (2009). These data sets provide information about the potential availability of water in regions with low water demand, thus they are used in the Water Risk Filter 5.0 to better account for deserts and other arid areas in the risk assessment.	Trabucco, A., & Zomer, R. J. (2009). Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geodatabase. CGIAR consortium for spatial information.
1.0 - Aridity (rank)	117	The aridity risk indicator is based on the Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial data sets by Trabucco and Zomer (2009). These data sets provide information about the potential availability of water in regions with low water demand, thus they are used in the Water Risk Filter 5.0 to better account for deserts and other arid areas in the risk assessment.	Trabucco, A., & Zomer, R. J. (2009). Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geodatabase. CGIAR consortium for spatial information.
1.1 - Water Depletion (score)	1.26	The water depletion risk indicator is based on annual average monthly net water depletion from Brauman et al. (2016). Their analysis is based on model outputs from the newest version of the integrated water resources model WaterGAP3 which measures water depletion as the ratio of water consumption-to-availability.	Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem Sci Anth, 4.
1.1 - Water Depletion (rank)	120	The water depletion risk indicator is based on annual average monthly net water depletion from Brauman et al. (2016). Their analysis is based on model outputs from the newest version of the integrated water resources model WaterGAP3 which measures water depletion as the ratio of water consumption-to-availability.	Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem Sci Anth, 4.
1.2 - Baseline Water Stress (score)	1.01	World Resources Institute's Baseline Water Stress measures the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use. A higher percentage indicates more competition among users.	Hofste, R., Kuzma, S., Walker, S., & Sutanudjaja, E.H. (2019). Aqueduct 3.0: Updated decision relevant global water risk indicators. Technical note. Washington, DC: World Resources Institute.

Indicator	Value	Description	Source
1.2 - Baseline Water Stress (rank)	159	World Resources Institute's Baseline Water Stress measures the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use. A higher percentage indicates more competition among users.	Hofste, R., Kuzma, S., Walker, S., & Sutanudjaja, E.H. (2019). Aqueduct 3.0: Updated decision relevant global water risk indicators. Technical note. Washington, DC: World Resources Institute.
1.3 - Blue Water Scarcity (score)	1.30	The blue water scarcity risk indicator is based on Mekonnen and Hoekstra (2016) global assessment of blue water scarcity on a monthly basis and at high spatial resolution (grid cells of 30 × 30 arc min resolution). Blue water scarcity is calculated as the ratio of the blue water footprint in a grid cell to the total blue water availability in the cell. The time period analyzed in this study ranges from 1996 to 2005.	Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323.
1.3 - Blue Water Scarcity (rank)	151	The blue water scarcity risk indicator is based on Mekonnen and Hoekstra (2016) global assessment of blue water scarcity on a monthly basis and at high spatial resolution (grid cells of 30×30 arc min resolution). Blue water scarcity is calculated as the ratio of the blue water footprint in a grid cell to the total blue water availability in the cell. The time period analyzed in this study ranges from 1996 to 2005.	Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323.
1.4 - Projected Change in Water Discharge (by ~2050) (score)	1.66	This risk indicator is based on multi-model simulation that applies both global climate and hydrological models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). To estimate the change at 2°C of global warming above 1980-2010 levels, simulated annual water discharge was averaged over a 31-year period with 2°C mean warming. Results are expressed in terms of relative change (%) in probability between present day (1980-2010) conditions and 2°C scenarios by 2050.	Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., & Gosling, S. N. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245-3250.
1.4 - Projected Change in Water Discharge (by ~2050) (rank)	121	This risk indicator is based on multi-model simulation that applies both global climate and hydrological models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). To estimate the change at 2°C of global warming above 1980-2010 levels, simulated annual water discharge was averaged over a 31-year period with 2°C mean warming. Results are expressed in terms of relative change (%) in probability between present day (1980-2010) conditions and 2°C scenarios by 2050.	Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., & Gosling, S. N. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245-3250.

Indicator	Value	Description	Source
1.5 - Drought Frequency Probability (score)	2.18	This risk indicator is based on the Standardized Precipitation and Evaporation Index (SPEI). Vicente-Serrano et al. (2010) developed this multi-scalar drought index applying both precipitation and temperature data to detect, monitor and analyze different drought types and impacts in the context of global warming. The mathematical calculations used for SPEI are similar to the Standard Precipitation Index (SPI), but it has the advantage to include the role of evapotranspiration.	Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
1.5 - Drought Frequency Probability (rank)	118	This risk indicator is based on the Standardized Precipitation and Evaporation Index (SPEI). Vicente-Serrano et al. (2010) developed this multi-scalar drought index applying both precipitation and temperature data to detect, monitor and analyze different drought types and impacts in the context of global warming. The mathematical calculations used for SPEI are similar to the Standard Precipitation Index (SPI), but it has the advantage to include the role of evapotranspiration.	Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
1.6 - Projected Change in Drought Occurrence (by ~2050) (score)	3.00	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). A drought threshold for pre-industrial conditions was calculated based on time-series averages. Results are expressed in terms of relative change (%) in probability between pre-industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
1.6 - Projected Change in Drought Occurrence (by ~2050) (rank)	153	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). A drought threshold for pre-industrial conditions was calculated based on time-series averages. Results are expressed in terms of relative change (%) in probability between pre-industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming-simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
2.1 - Estimated Flood Occurrence (score)	3.11	This risk indicator is based on the recurrence of floods within the 34-year time frame period of 1985 to 2019. The occurrence of floods within a given location was estimated using data from Flood Observatory, University of Colorado. The Flood Observatory use data derived from a wide variety of news, governmental, instrumental, and remote sensing source.	Brakenridge, G. R. (2019). Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado.
2.1 - Estimated Flood Occurrence (rank)	101	This risk indicator is based on the recurrence of floods within the 34-year time frame period of 1985 to 2019. The occurrence of floods within a given location was estimated using data from Flood Observatory, University of Colorado. The Flood Observatory use data derived from a wide variety of news, governmental, instrumental, and remote sensing source.	Brakenridge, G. R. (2019). Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado.

	Description	Source
i.	defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre-	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming-simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
	global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The magnitude of the flood event was defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre-	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming–simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
	pollutants with well-documented direct or indirect negative effects on water security for both humans and freshwater biodiversity, compiled by Vörösmarty et al. (2010). The negative effects are specific to individual pollutants, ranging from impacts mediated by eutrophication such as algal blooms and oxygen depletion (e.g., caused by phosphorus and organic loading) to direct toxic effects (e.g., caused by pesticides, mercury). The overall Surface Water Contamination Index is calculated based on a range of key pollutants with different weightings according to the level of their negative effects on water security for both humans and freshwater biodiversity: soil salinization (8%), nitrogen (12%) and phosphorus (P, 13%)	Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555.
		Intercomparison Project (ISIMIP). The magnitude of the flood event was defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre-industrial and 2°C scenarios. This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The magnitude of the flood event was defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre-industrial and 2°C scenarios. The underlying data for this risk indicator is based on a broad suite of pollutants with well-documented direct or indirect negative effects on water security for both humans and freshwater biodiversity, compiled by Vörösmarty et al. (2010). The negative effects are specific to individual pollutants, ranging from impacts mediated by eutrophication such as algal blooms and oxygen depletion (e.g., caused by phosphorus and organic loading) to direct toxic effects (e.g., caused by pesticides, mercury). The overall Surface Water Contamination Index is calculated based on a range of key pollutants with different weightings according to the level of their negative effects on water security for both humans and freshwater biodiversity: soil salinization (8%), nitrogen (12%) and phosphorus (P, 13%) loading, mercury deposition (5%), pesticide loading (10%), sediment loading (17%), organic loading (as Biological Oxygen Demand, BOD; 15%), potential acidification (9%), and thermal alteration (11%).

Indicator	Value	Description	Source
3.1 - Surface Water Contamination Index (rank)	164	The underlying data for this risk indicator is based on a broad suite of pollutants with well-documented direct or indirect negative effects on water security for both humans and freshwater biodiversity, compiled by Vörösmarty et al. (2010). The negative effects are specific to individual pollutants, ranging from impacts mediated by eutrophication such as algal blooms and oxygen depletion (e.g., caused by phosphorus and organic loading) to direct toxic effects (e.g., caused by pesticides, mercury). The overall Surface Water Contamination Index is calculated based on a range of key pollutants with different weightings according to the level of their negative effects on water security for both humans and freshwater biodiversity: soil salinization (8%), nitrogen (12%) and phosphorus (P, 13%) loading, mercury deposition (5%), pesticide loading (10%), sediment loading (17%), organic loading (as Biological Oxygen Demand, BOD; 15%), potential acidification (9%), and thermal alteration (11%).	Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555.
4.1 - Fragmentation Status of Rivers (score)	2.21	This risk indicator is based on the data set by Grill et al. (2019) mapping the world's free-flowing rivers. Grill et al. (2019) compiled a geometric network of the global river system and associated attributes, such as hydro-geometric properties, as well as pressure indicators to calculate an integrated connectivity status index (CSI). While only rivers with high levels of connectivity in their entire length are classified as free-flowing, rivers of CSI < 95% are considered as fragmented at a certain degree.	Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & Macedo, H. E. (2019). Mapping the world's free-flowing rivers. Nature, 569(7755), 215.
4.1 - Fragmentation Status of Rivers (rank)	105	This risk indicator is based on the data set by Grill et al. (2019) mapping the world's free-flowing rivers. Grill et al. (2019) compiled a geometric network of the global river system and associated attributes, such as hydro-geometric properties, as well as pressure indicators to calculate an integrated connectivity status index (CSI). While only rivers with high levels of connectivity in their entire length are classified as free-flowing, rivers of CSI < 95% are considered as fragmented at a certain degree.	Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & Macedo, H. E. (2019). Mapping the world's free-flowing rivers. Nature, 569(7755), 215.
4.2 - Catchment Ecosystem Services Degradation Level (tree cover loss) (score)	2.81	For this risk indicator, tree cover loss was applied as a proxy to represent catchment ecosystem services degradation since forests play an important role in terms of water regulation, supply and pollution control. The forest cover data is based on Hansen et al.'s global Landsat data at a 30-meter spatial resolution to characterize forest cover and change. The authors defined trees as vegetation taller than 5 meters in height, and forest cover loss as a stand-replacement disturbance, or a change from a forest to non-forest state, during the period 2000 – 2018.	Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.

Indicator	Value	Description	Source
4.2 - Catchment Ecosystem Services Degradation Level (tree cover loss) (rank)	55	For this risk indicator, tree cover loss was applied as a proxy to represent catchment ecosystem services degradation since forests play an important role in terms of water regulation, supply and pollution control. The forest cover data is based on Hansen et al.'s global Landsat data at a 30-meter spatial resolution to characterize forest cover and change. The authors defined trees as vegetation taller than 5 meters in height, and forest cover loss as a stand-replacement disturbance, or a change from a forest to non-forest state, during the period 2000 – 2018.	Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.
4.3 - Projected Impacts on Freshwater Biodiversity (score)	1.99	The study by Tedesco et al. (2013) to project changes [% increase or decrease] in extinction rate by ~2090 of freshwater fish due to water availability loss from climate change is used as a proxy to estimate the projected impacts on freshwater biodiversity.	Tedesco, P. A., Oberdorff, T., Cornu, J. F., Beauchard, O., Brosse, S., Dürr, H. H., & Hugueny, B. (2013). A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 50(5), 1105-1115.
4.3 - Projected Impacts on Freshwater Biodiversity (rank)	152	The study by Tedesco et al. (2013) to project changes [% increase or decrease] in extinction rate by ~2090 of freshwater fish due to water availability loss from climate change is used as a proxy to estimate the projected impacts on freshwater biodiversity.	Tedesco, P. A., Oberdorff, T., Cornu, J. F., Beauchard, O., Brosse, S., Dürr, H. H., & Hugueny, B. (2013). A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 50(5), 1105-1115.
5.1 - Freshwater Policy Status (SDG 6.5.1) (score)	2.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Policy" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.1 - Freshwater Policy Status (SDG 6.5.1) (rank)	156	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Policy" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.2 - Freshwater Law Status (SDG 6.5.1) (score)	1.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Law(s)" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.

Indicator	Value	Description	Source
5.2 - Freshwater Law Status (SDG 6.5.1) (rank)	191	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Law(s)" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.3 - Implementation Status of Water Management Plans (SDG 6.5.1) (score)	2.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National IWRM plans" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.3 - Implementation Status of Water Management Plans (SDG 6.5.1) (rank)	165	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National IWRM plans" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
6.1 - Corruption Perceptions Index (score)	1.00	This risk Indicator is based on the latest Transparency International's data: the Corruption Perceptions Index 2018. This index aggregates data from a number of different sources that provide perceptions of business people and country experts on the level of corruption in the public sector.	Transparency International (2019). Corruption Perceptions Index 2018. Berlin: Transparency International.
6.1 - Corruption Perceptions Index (rank)	191	This risk Indicator is based on the latest Transparency International's data: the Corruption Perceptions Index 2018. This index aggregates data from a number of different sources that provide perceptions of business people and country experts on the level of corruption in the public sector.	Transparency International (2019). Corruption Perceptions Index 2018. Berlin: Transparency International.
6.2 - Freedom in the World Index (score)	1.00	This risk indicator is based on Freedom House (2019), an annual global report on political rights and civil liberties, composed of numerical ratings and descriptive texts for each country and a select group of territories. The 2019 edition involved more than 100 analysts and more than 30 advisers with global, regional, and issue-based expertise to covers developments in 195 countries and 14 territories from January 1, 2018, through December 31, 2018.	Freedom House (2019). Freedom in the world 2019. Washington, DC: Freedom House.

Indicator	Value	Description	Source
6.2 - Freedom in the World Index (rank)	190	This risk indicator is based on Freedom House (2019), an annual global report on political rights and civil liberties, composed of numerical ratings and descriptive texts for each country and a select group of territories. The 2019 edition involved more than 100 analysts and more than 30 advisers with global, regional, and issue-based expertise to covers developments in 195 countries and 14 territories from January 1, 2018, through December 31, 2018.	Freedom House (2019). Freedom in the world 2019. Washington, DC: Freedom House.
6.3 - Business Participation in Water Management (SDG 6.5.1) (score)	3.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Business Participation in Water Resources Development, Management and Use" indicator, which corresponds to one of the six national level indicators under the Institutions and Participation category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
6.3 - Business Participation in Water Management (SDG 6.5.1) (rank)	109	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Business Participation in Water Resources Development, Management and Use" indicator, which corresponds to one of the six national level indicators under the Institutions and Participation category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
7.1 - Management Instruments for Water Management (SDG 6.5.1) (score)	2.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Sustainable and efficient water use management" indicator, which corresponds to one of the five national level indicators under the Management Instruments category. For SDG 6.5.1, management instruments refer to the tools and activities that enable decision-makers and users to make rational and informed choices between alternative actions.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
7.1 - Management Instruments for Water Management (SDG 6.5.1) (rank)	152	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Sustainable and efficient water use management" indicator, which corresponds to one of the five national level indicators under the Management Instruments category. For SDG 6.5.1, management instruments refer to the tools and activities that enable decision-makers and users to make rational and informed choices between alternative actions.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.

Indicator	Value	Description	Source
7.2 - Groundwater Monitoring Data Availability and Management (score)	1.00	This risk indicator is based on the data set by UN IGRAC (2019) to determine the level of availability of groundwater monitoring data at country level as groundwater management decisions rely strongly on data availability. The level of groundwater monitoring data availability for groundwater management is determined according to a combination of three criteria developed by WWF and IGRAC: 1) Status of country groundwater monitoring programme, 2) groundwater data availability for NGOs and 3) Public access to processed groundwater monitoring data.	UN IGRAC (2019). Global Groundwater Monitoring Network GGMN Portal. UN International Groundwater Resources Assessment Centre (IGRAC).
7.2 - Groundwater Monitoring Data Availability and Management (rank)	190	This risk indicator is based on the data set by UN IGRAC (2019) to determine the level of availability of groundwater monitoring data at country level as groundwater management decisions rely strongly on data availability. The level of groundwater monitoring data availability for groundwater management is determined according to a combination of three criteria developed by WWF and IGRAC: 1) Status of country groundwater monitoring programme, 2) groundwater data availability for NGOs and 3) Public access to processed groundwater monitoring data.	UN IGRAC (2019). Global Groundwater Monitoring Network GGMN Portal. UN International Groundwater Resources Assessment Centre (IGRAC).
7.3 - Density of Runoff Monitoring Stations (score)	3.93	The density of monitoring stations for water quantity was applied as proxy to develop this risk indicator. The Global Runoff Data Base was used to estimate the number of monitoring stations per 1000km2 of the main river system (data base access date: May 2018).	BfG (2019). Global Runoff Data Base. German Federal Institute of Hydrology (BfG).
7.3 - Density of Runoff Monitoring Stations (rank)	56	The density of monitoring stations for water quantity was applied as proxy to develop this risk indicator. The Global Runoff Data Base was used to estimate the number of monitoring stations per 1000km2 of the main river system (data base access date: May 2018).	BfG (2019). Global Runoff Data Base. German Federal Institute of Hydrology (BfG).
8.1 - Access to Safe Drinking Water (score)	1.00	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000-2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.1 - Access to Safe Drinking Water (rank)	188	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000-2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.2 - Access to Sanitation (score)	1.00	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000-2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.

Indicator	Value	Description	Source
8.2 - Access to Sanitation (rank)	189	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000-2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.3 - Financing for Water Resource Development and Management (SDG 6.5.1) (score)	2.00	This risk indicator is based on the average 'Financing' score of UN SDG 6.5.1. Degree of IWRM Implementation database. UN SDG 6.5.1 database contains a category on financing which assesses different aspects related to budgeting and financing made available and used for water resources development and management from various sources.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
8.3 - Financing for Water Resource Development and Management (SDG 6.5.1) (rank)	169	This risk indicator is based on the average 'Financing' score of UN SDG 6.5.1. Degree of IWRM Implementation database. UN SDG 6.5.1 database contains a category on financing which assesses different aspects related to budgeting and financing made available and used for water resources development and management from various sources.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
9.1 - Cultural Diversity (score)	1.00	Water is a social and cultural good. The cultural diversity risk indicator was included in order to acknowledge that businesses face reputational risk due to the importance of freshwater for indigenous and traditional people in their daily life, religion and culture. This risk indicator is based on Oviedo and Larsen (2000) data set, which mapped the world's ethnolinguistic groups onto the WWF map of the world's ecoregions. This cross-mapping showed for the very first time the significant overlap that exists between the global geographic distribution of biodiversity and that of linguistic diversity.	Oviedo, G., Maffi, L., & Larsen, P. B. (2000). Indigenous and traditional peoples of the world and ecoregion conservation: An integrated approach to conserving the world's biological and cultural diversity. Gland: WWF (World Wide Fund for Nature) International.
9.1 - Cultural Diversity (rank)	192	Water is a social and cultural good. The cultural diversity risk indicator was included in order to acknowledge that businesses face reputational risk due to the importance of freshwater for indigenous and traditional people in their daily life, religion and culture. This risk indicator is based on Oviedo and Larsen (2000) data set, which mapped the world's ethnolinguistic groups onto the WWF map of the world's ecoregions. This cross-mapping showed for the very first time the significant overlap that exists between the global geographic distribution of biodiversity and that of linguistic diversity.	Oviedo, G., Maffi, L., & Larsen, P. B. (2000). Indigenous and traditional peoples of the world and ecoregion conservation: An integrated approach to conserving the world's biological and cultural diversity. Gland: WWF (World Wide Fund for Nature) International.
10.1 - Freshwater Endemism (score)	5.00	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Companies operating in basins with higher number of endemic fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.

Indicator	Value	Description	Source
10.1 - Freshwater Endemism (rank)	26	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Companies operating in basins with higher number of endemic fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
10.2 - Freshwater Biodiversity Richness (score)	3.00	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Count of fish species is used as a representation of freshwater biodiversity richness. Companies operating in basins with higher number of fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
10.2 - Freshwater Biodiversity Richness (rank)	117	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Count of fish species is used as a representation of freshwater biodiversity richness. Companies operating in basins with higher number of fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
11.1 - National Media Coverage (score)	2.00	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware local residents typically are of water-related issues due to national media coverage. The status of the river basin (e.g., scarcity and pollution) is taken into account, as well as the importance of water for livelihoods (e.g., food and shelter).	WWF & Tecnoma (TYPSA Group)
11.1 - National Media Coverage (rank)	192	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware local residents typically are of water-related issues due to national media coverage. The status of the river basin (e.g., scarcity and pollution) is taken into account, as well as the importance of water for livelihoods (e.g., food and shelter).	WWF & Tecnoma (TYPSA Group)
11.2 - Global Media Coverage (score)	2.00	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware people are of water-related issues due to global media coverage. Familiarity to and media coverage of the region and regional water-related disasters are taken into account.	WWF & Tecnoma (TYPSA Group)
11.2 - Global Media Coverage (rank)	152	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware people are of water-related issues due to global media coverage. Familiarity to and media coverage of the region and regional water-related disasters are taken into account.	WWF & Tecnoma (TYPSA Group)

Indicator	Value	Description	Source
12.1 - Conflict News Events (RepRisk) (score)	3.00	This risk indicator is based on 2018 data collected by RepRisk on counts and registers of documented negative incidents, criticism and controversies that can affect a company's reputational risk. These negative news events are labelled per country and industry class.	RepRisk & WWF (2019). Due diligence database on ESG and business conduct risks. RepRisk.
12.1 - Conflict News Events (RepRisk) (rank)	110	This risk indicator is based on 2018 data collected by RepRisk on counts and registers of documented negative incidents, criticism and controversies that can affect a company's reputational risk. These negative news events are labelled per country and industry class.	RepRisk & WWF (2019). Due diligence database on ESG and business conduct risks. RepRisk.
12.2 - Hydro-political Risk (score)	2.02	This risk indicator is based on the assessment of hydro-political risk by Farinosi et al. (2018). More specifically, it is based on the results of spatial modelling by Farinosi et al. (2018) that determined the main parameters affecting water cross-border conflicts and calculated the likelihood of hydro-political issues.	Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., De Roo, A., & Bidoglio, G. (2018). An innovative approach to the assessment of hydro-political risk: A spatially explicit, data driven indicator of hydropolitical issues. Global environmental change, 52, 286-313.
12.2 - Hydro-political Risk (rank)	126	This risk indicator is based on the assessment of hydro-political risk by Farinosi et al. (2018). More specifically, it is based on the results of spatial modelling by Farinosi et al. (2018) that determined the main parameters affecting water cross-border conflicts and calculated the likelihood of hydro-political issues.	Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., De Roo, A., & Bidoglio, G. (2018). An innovative approach to the assessment of hydro-political risk: A spatially explicit, data driven indicator of hydropolitical issues. Global environmental change, 52, 286-313.
Population, total (#)	4692700	Population, total	The World Bank 2018, Data , hompage accessed 20/04/2018
GDP (current US\$)	184969146624	GDP (current US\$)	The World Bank 2018, Data , hompage accessed 20/04/2018
EPI 2018 score (0-100)	75.96	Environmental Performance Index	
WGI -Voice and Accountability (0-100)	99.05	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132

Indicator	Value	Description	Source
WGI -Political stability no violence (0-100)	97.04	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Government Effectiveness (0-100)	97.12	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Regulatory Quality (0-100)	99.04	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Rule of Law (0-100)	98.08	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Control of Corruption (0-100)	100.00	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132

Indicator	Value	Description	Source
WRI BWS all industries (0-5)	1.35	WRI Baseline Water Stress (BWS)	Gassert, F., P. Reig, T. Luo, and A. Maddocks. 2013. "Aqueduct country and river basin rankings: a weighted aggregation of spatially distinct hydrological indicators." Working paper. Washington, DC: World Resources Institute, December 2013. Available online at http://wri.org/publication/aqueduct-country-river-basin-rankings.
WRI BWS Ranking (1=very high)	100	WRI Baseline Water Stress (BWS)	Gassert, F., P. Reig, T. Luo, and A. Maddocks. 2013. "Aqueduct country and river basin rankings: a weighted aggregation of spatially distinct hydrological indicators." Working paper. Washington, DC: World Resources Institute, December 2013. Available online at http://wri.org/publication/aqueduct-country-river-basin-rankings.
Baseline Water Stress (BWS) - 2020 BAU (1=very high)	109	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2020 Optimistic (increasing rank describes lower risk)	110	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2020 Pessimistic (increasing rank describes lower risk)	110	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.

Indicator	Value	Description	Source
Baseline Water Stress (BWS) - 2030 BAU (increasing rank describes lower risk)	116	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2030 Optimistic (increasing rank describes lower risk)	116	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2030 Pessimistic (increasing rank describes lower risk)	117	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 BAU (increasing rank describes lower risk)	124	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 Optimistic (increasing rank describes lower risk)	128	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 Pessimistic (increasing rank describes lower risk)	122	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct-projected-water-stress-country-rankings.

Indicator	Value	Description	Source
Total water footprint of national consumption (m3/a/cap)	1588.76	WFN Water Footprint Data	Mekonnen, M.M. and Hoekstra, A.Y. (2011) National water footprint accounts: The green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands.http://www.waterfootprint.org/Rep orts/Report50-NationalWaterFootprints-Vol1.pdf
Ratio external / total water footprint (%)	57.67	WFN Water Footprint Data	Mekonnen, M.M. and Hoekstra, A.Y. (2011) National water footprint accounts: The green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands.http://www.waterfootprint.org/Rep orts/Report50-NationalWaterFootprints-Vol1.pdf
Area equipped for full control irrigation: total (1000 ha)	721.80	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Area equipped for irrigation: total (1000 ha)	721.80	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
% of the area equipped for irrigation actually irrigated (%)	82.19	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Electricity production from hydroelectric sources (% of total)	55.49	World Development Indicators	The World Bank 2018, Data , hompage accessed 20/04/2018
Total internal renewable water resources (IRWR) (10^9 m3/year)	327.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Total internal renewable water resources (IRWR) (10^9 m3/year)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Water resources: total external renewable (10^9 m3/year)	327.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13

Indicator	Value	Description	Source
Total renewable water resources (10^9 m3/year)	327.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Dependency ratio (%)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Total renewable water resources per capita (m3/inhab/year)	72201.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
World happiness [0-8]	7.32	WorldHappinessReport.org	World Happiness Report, homepage accessed 20/04/2018

Country Aspects

1. PHYSICAL ASPECTS

1.1.WATER RESOURCES

1.1.1.WATER RESOURCES

New Zealand is a narrow, mountainous country characterized by relatively small catchments and fast flowing rivers and streams. Half of its 425,000km of rivers and streams are small headwater streams.

Of New Zealand's total length of rivers and streams, 51 per cent lie in catchments with predominantly natural land cover, such as native bush or alpine rock and tussock. The remaining 49 per cent of river length is in catchments that have been modified by agriculture (43 per cent), plantation forestry (5 per cent) or urban settlement (1 per cent).

Water resources in New Zealand are as follows:

It	
Internal Renewable Water Reso	ources (IRWR),1977-2001 (KM3)
Surface water produced internally	X
Groundwater Recharge	X
Overlap (shared by groundwater and surface water)	х
Total Internal Renewable Water Resources	327
Per capita IRWR, 2001 (cubic meters)	85,221
Natural Renewable	Water Resources
Total, 1977-2001 (cubic km)	327
Per capita, 2002 (cubic meters per person)	85,221
Annual Riv	ver Flows:
From other countries (cubic km)	0
To other countries (cubic km)	0

1.1.2.WATER USE

A review of water allocation information (Lincoln Environmental, 2000) and of New Zealand's water consents (excluding Nelson City Council and West Coast Regional Council) was grouped according to three water sources (surface, storage and groundwater), three broad use categories (domestic, industry and irrigation) and 16 specific use categories. Information on regional council consents was collected in 1999. A summary of regional allocations from this data shows approximately 266 million m³/week is allocated in 14 regions. Allocation from surface water makes up the largest proportion of the total.

Findings from this work include:

- -72 per cent of all water allocated in New Zealand is allocated from surface water (either surface water or storage) and 28 per cent is allocated from groundwater;
- -77 per cent of water allocated is for irrigation, 15 per cent is for community, municipal and domestic use, and 7 per cent is for industrial use;
- -19 per cent of the current weekly allocation has been allocated since 1990. The majority of water in New Zealand was therefore initially allocated under legislation predating the Resource Management Act;
- -There is approximately 5,000km2 of irrigated land in New Zealand, 3,500km2 of which is in Canterbury;
- -41 per cent of this is irrigated from groundwater.

According to the Food and Agriculture Organization of the United Nations (AQUASTAT) data, water withdrawals in New Zealand are:

Water W	Vithdrawals
Year of Withdrawal Data	1991
Total withdrawals (cubic km)	2
Withdrawals per capita (cubic m)	588
Withdrawals (as a	percentage of Actual)
Renewable Water Resources	1%
Withdrawals by Sect	or (as a percent of total)
Agriculture	44%
Industry	10%
Domestic	46%

1.2. WATER QUALITY, ECOSYSTEMS AND HUMAN HEALTH

By world standards New Zealand's freshwater bodies are of good quality. They support a unique array of flora and fauna and are highly regarded internationally for their recreational value.

However, water quality in urban and rural areas is degraded, and is coming under increasing pressure as land use intensifies. This has worrying implications for aquatic life, drinking water supplies, cultural values and water-based recreation.

More than 800 sites on New Zealand's rivers and streams are regularly monitored for water quality by regional councils and the National Institute of Water and Atmospheric Research (NIWA). Of these sites, 77 are located on 35 rivers throughout New Zealand which collectively make up the National River Water Quality Network operated by NIWA. The remaining sites, located on both rivers and streams, are part of monitoring networks operated by regional councils.

State of river water (2003-2007)

- -The state of water quality and recent trends in New Zealand's rivers is highly variable around the country.
- -Areas where river water quality is significantly deteriorated include lowland areas of Northland, Auckland, Waikato, the east coast of the North Island, Taranaki, Manawatu-Wanganui, Canterbury and Southland.
- -Rivers in urban and rural areas generally have poorer water quality compared to native forest. Rural areas in particular are under increasing pressure as land use intensifies. Results for 2003-2007 indicate that median levels of total nitrogen are five times worse in pasture and nine times worse in urban areas than in areas of native forest.
- -Also, on average, between 2003 and 2007 the water was half as clear in areas of pasture compared to areas of native forest. Clear water is important for aquatic life and recreation.
- -Based on the river water quality data for 2003-2007, over half of sites in Auckland, Waikato, Canterbury and Southland regions had median total nitrogen levels that exceeded New Zealand guidelines and over half of sites in Northland, Auckland, Waikato and Southland had median total phosphorus levels that exceeded the guidelines.

Recent trends (1998-2007)

- -A previous study covering a longer time period (1989-2007) showed nationally that nutrient levels increased (deterioration in water quality) and clarity improved.
- -However, the recent findings show that changes in water quality at the national scale over the 10 years are varied. Between 1998 and 2007 national water quality deteriorated for total nitrogen, total phosphorus, conductivity and clarity but improved for bacterial and ammoniacal nitrogen levels.
- -There were, however, many river sites that showed no significant change between 1998 and 2007. For example, total phosphorus concentrations showed no significant change at 77 per cent of monitored sites around the country.
- -The reports also show sites where there is declining water quality. For example, 23 per cent of monitored sites showed a significant increase in total nitrogen levels between 1998 and 2007 and 26 per cent of sites showed a significant decrease in clarity. Both of which are a deterioration in water quality.
- -Between 1998 and 2007 national water quality deteriorated for clarity, total phosphorus, total nitrogen, oxidized nitrogen and conductivity in rivers with catchments dominated by pastoral land cover.

2. GOVERNANCE ASPECTS

2.1.WATER INSTITUTIONS

The Minister for the Environment has formal responsibilities under the following Acts:

- -Resource Management Act 1991;
- -Waste Minimisation Act 2008;
- -Hazardous Substances and New Organisms Act 1996;

-Soil Conservation and Rivers Control Act 1941.

The Ministry for the Environment is collaborating closely on key issues with other government departments through the Natural Resources Sector.

The Natural Resources Sector approach aims to enhance collaboration between government agencies. Its main purpose is to ensure a strategic, integrated and aligned approach is taken to natural resources development and management across government agencies.

The network is chaired by the Ministry for the Environment's Chief Executive and also includes:

- -The Ministry of Agriculture and Forestry;
- -The Ministry of Economic Development;
- -The Ministry of Fisheries;
- -The Department of Conservation;
- -The Department of Prime Minister and Cabinet;
- -Land Information New Zealand;
- -Te Puni Kokiri;
- -The Treasury;
- -The State Services Commission.

The Sector provides high quality advice to government. It also provides effective implementation and execution of major government policies through coordination and integration across agencies, management of relationships, and alignment of the policies and practices of individual agencies.

The work and priorities of the Sector are identified from the evidence base and analysis of trends relating to the supply of, demand for and quality of natural resources. Current priority work areas include resource management, water and Māori issues.

2.2.WATER MANAGEMENT

Generally water management in New Zealand is devolved to regional and district councils, although over the last year the government has put in place a special process to consider and resolve conflicting interests in water use in the lower Waitaki River in the South Island.

Domestic water supply is a local government responsibility. Some irrigation schemes are owned by the private sector, for example, the Rangitata Diversion Race is a share holding of local farmers. New Zealand complies with virtually all the relevant recommendations for activities in relation to water management.

Day-to-day water management is the responsibility of regional, city and district councils. The use of all natural water in New Zealand is vested in the Crown. Regional councils control all activities relating to fresh water, including land use and the taking of, and discharges into, water. They are also responsible for flood protection and erosion control. City and district councils provide services such as water supply, sewage reticulation and disposal and stormwater reticulation.

This is primarily due to the infrastructure established under the Soil Conservation and Rivers Control Act 1941 and the Resource Management Act (and its amendments 1994, 1996, 1997). The latter also governs the use of water by agriculture, by industry and by households. The New Zealand Drinking Water Standards (Ministry of Health) and the bylaws of Territorial Authorities (for

example, district councils) also apply to households.

The Resource Management Act allows for consultation with all parties (for example, the private sector) on resource management issues. Local government contracts private sector expertise on a variety of water management issues. Policy formulation often includes the release of discussion documents accompanied by a call for public submissions. The analysis of submissions received is taken into account in the iteration of policy. Public submissions, both written and oral, to parliamentary committees is also part of the process of developing legislation. Conflict resolution is conducted through the procedures of the Resource Management Act and Environment Court.

2.3. WATER POLICY AND LEGAL FRAMEWORK

A variety of legislation, strategies and practical guidance measures are in place, or being developed, to prevent pollution of, and to conserve fresh water supplies. These include:

- -The government's new strategy New Start for Fresh Water was announced on 8 June and is outlined in a cabinet paper. It sets out the government's new direction for water management in New Zealand, and outlines some of the choices we face and the implications of those choices. A subsequent paper will outline a programme of work to run until 2011 and beyond.
- -The proposed National Policy Statement for Freshwater Management aims to ensure the enhancement of the overall quality of fresh water resources as well as managing the increasing demand for water.
- -The National Environmental Standard for Sources of Human Drinking Water will reduce the risk of contaminating drinking water sources such as rivers and groundwater.
- -The proposed National Environmental Standard for On-site Wastewater Systems aims to improve the management and environmental performance of domestic on-site wastewater systems so they do not contaminate waterways.

The main elements regarding water projects and partnerships are:

- -The objective of the Joint Māori Work Programme is to enhance decision-making in freshwater management by having greater and more consistent Māori involvement and to incorporate Māori perspectives at the national and regional levels.
- -The jointly funded Lake Taupo Water Quality Protection Programme is addressing Lake Taupo's water quality issues.
- -The Rotorua lakes have received \$72.1 million commitment from the Crown to establish the Rotorua Lakes Restoration Action Programme.
- -The Dairying and Clean Streams Accord establishes water quality targets through a government/industry partnership.
- -The Household Sustainability Programme provides advice for the public on living more sustainably, including improving water use at home.
- -The Sustainable Water Programme of Action (2003-2008) was a policy programme aimed at improving freshwater management under the Resource Management Act 1991.
- -A stakeholder-led collaborative process has been established under the Land and Water Forum. This will develop a shared understanding of the issues and big picture outcomes wanted for New

Zealand, and options for achieving those outcomes.