

Water Indicators

Indicator	Value	Description	Source
Overall Basin Risk (score)	3.12	Overall Basin Risk (score)	
Overall Basin Risk (rank)	20	Overall Basin Risk (rank)	
Physical risk (score)	2.94	Physical risk (score)	
Physical risk (rank)	58	Physical risk (rank)	
Regulatory risk (score)	3.07	Regulatory risk (score)	
Regulatory risk (rank)	57	Regulatory risk (rank)	
Reputation risk (score)	3.73	Reputation risk (score)	
Reputation risk (rank)	7	Reputation risk (rank)	
1. Quantity - Scarcity (score)	2.09	1. Quantity - Scarcity (score)	
1. Quantity - Scarcity (rank)	105	1. Quantity - Scarcity (rank)	
2. Quantity - Flooding (score)	4.56	2. Quantity - Flooding (score)	
2. Quantity - Flooding (rank)	12	2. Quantity - Flooding (rank)	
3. Quality (score)	3.21	3. Quality (score)	
3. Quality (rank)	79	3. Quality (rank)	
4. Ecosystem Service Status (score)	3.29	4. Ecosystem Service Status (score)	
4. Ecosystem Service Status (rank)	29	4. Ecosystem Service Status (rank)	
5. Enabling Environment (Policy & Laws) (score)	2.10	5. Enabling Environment (Policy & Laws) (score)	
5. Enabling Environment (Policy & Laws) (rank)	123	5. Enabling Environment (Policy & Laws) (rank)	
6. Institutions and Governance (score)	4.25	6. Institutions and Governance (score)	
6. Institutions and Governance (rank)	16	6. Institutions and Governance (rank)	
7. Management Instruments (score)	3.13	7. Management Instruments (score)	
7. Management Instruments (rank)	58	7. Management Instruments (rank)	
8 - Infrastructure & Finance (score)	2.55	8 - Infrastructure & Finance (score)	
8 - Infrastructure & Finance (rank)	77	8 - Infrastructure & Finance (rank)	
9. Cultural Diversity (score)	4.00	9. Cultural importance (score)	
9. Cultural Diversity (rank)	17	9. Cultural importance (rank)	
10. Biodiversity Importance (score)	3.95	10. Biodiversity importance (score)	

Indicator	Value	Description	Source
10. Biodiversity Importance (rank)	56	10. Biodiversity importance (rank)	
11. Media Scrutiny (score)	4.00	11. Media Scrutiny (score)	
11. Media Scrutiny (rank)	10	11. Media Scrutiny (rank)	
12. Conflict (score)	3.11	12. Conflict (score)	
12. Conflict (rank)	37	12. Conflict (rank)	
1.0 - Aridity (score)	1.00	The aridity risk indicator is based on the Global Aridity Index (Global- Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial data sets by Trabucco and Zomer (2009). These data sets provide information about the potential availability of water in regions with low water demand, thus they are used in the Water Risk Filter 5.0 to better account for deserts and other arid areas in the risk assessment.	Trabucco, A., & Zomer, R. J. (2009). Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geo- database. CGIAR consortium for spatial information.
1.0 - Aridity (rank)	122	The aridity risk indicator is based on the Global Aridity Index (Global- Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial data sets by Trabucco and Zomer (2009). These data sets provide information about the potential availability of water in regions with low water demand, thus they are used in the Water Risk Filter 5.0 to better account for deserts and other arid areas in the risk assessment.	Trabucco, A., & Zomer, R. J. (2009). Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geo- database. CGIAR consortium for spatial information.
1.1 - Water Depletion (score)	1.84	The water depletion risk indicator is based on annual average monthly net water depletion from Brauman et al. (2016). Their analysis is based on model outputs from the newest version of the integrated water resources model WaterGAP3 which measures water depletion as the ratio of water consumption-to-availability.	Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem Sci Anth, 4.
1.1 - Water Depletion (rank)	90	The water depletion risk indicator is based on annual average monthly net water depletion from Brauman et al. (2016). Their analysis is based on model outputs from the newest version of the integrated water resources model WaterGAP3 which measures water depletion as the ratio of water consumption-to-availability.	Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elem Sci Anth, 4.
1.2 - Baseline Water Stress (score)	1.45	World Resources Institute's Baseline Water Stress measures the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use. A higher percentage indicates more competition among users.	Hofste, R., Kuzma, S., Walker, S., & Sutanudjaja, E.H. (2019). Aqueduct 3.0: Updated decision relevant global water risk indicators. Technical note. Washington, DC: World Resources Institute.

Indicator	Value	Description	Source
1.2 - Baseline Water Stress (rank)	120	World Resources Institute's Baseline Water Stress measures the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use. A higher percentage indicates more competition among users.	Hofste, R., Kuzma, S., Walker, S., & Sutanudjaja, E.H. (2019). Aqueduct 3.0: Updated decision relevant global water risk indicators. Technical note. Washington, DC: World Resources Institute.
1.3 - Blue Water Scarcity (score)	3.54	The blue water scarcity risk indicator is based on Mekonnen and Hoekstra (2016) global assessment of blue water scarcity on a monthly basis and at high spatial resolution (grid cells of 30 × 30 arc min resolution). Blue water scarcity is calculated as the ratio of the blue water footprint in a grid cell to the total blue water availability in the cell. The time period analyzed in this study ranges from 1996 to 2005.	Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323.
1.3 - Blue Water Scarcity (rank)	55	The blue water scarcity risk indicator is based on Mekonnen and Hoekstra (2016) global assessment of blue water scarcity on a monthly basis and at high spatial resolution (grid cells of 30 × 30 arc min resolution). Blue water scarcity is calculated as the ratio of the blue water footprint in a grid cell to the total blue water availability in the cell. The time period analyzed in this study ranges from 1996 to 2005.	Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323.
1.4 - Projected Change in Water Discharge (by ~2050) (score)	1.40	This risk indicator is based on multi-model simulation that applies both global climate and hydrological models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). To estimate the change at 2°C of global warming above 1980-2010 levels, simulated annual water discharge was averaged over a 31-year period with 2°C mean warming. Results are expressed in terms of relative change (%) in probability between present day (1980-2010) conditions and 2°C scenarios by 2050.	Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., & Gosling, S. N. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245- 3250.
1.4 - Projected Change in Water Discharge (by ~2050) (rank)	136	This risk indicator is based on multi-model simulation that applies both global climate and hydrological models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). To estimate the change at 2°C of global warming above 1980-2010 levels, simulated annual water discharge was averaged over a 31-year period with 2°C mean warming. Results are expressed in terms of relative change (%) in probability between present day (1980-2010) conditions and 2°C scenarios by 2050.	Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., & Gosling, S. N. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245- 3250.

Indicator	Value	Description	Source
1.5 - Drought Frequency Probability (score)	2.01	This risk indicator is based on the Standardized Precipitation and Evaporation Index (SPEI). Vicente-Serrano et al. (2010) developed this multi-scalar drought index applying both precipitation and temperature data to detect, monitor and analyze different drought types and impacts in the context of global warming. The mathematical calculations used for SPEI are similar to the Standard Precipitation Index (SPI), but it has the advantage to include the role of evapotranspiration.	Vicente-Serrano, S. M., Beguería, S., & López- Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
1.5 - Drought Frequency Probability (rank)	129	This risk indicator is based on the Standardized Precipitation and Evaporation Index (SPEI). Vicente-Serrano et al. (2010) developed this multi-scalar drought index applying both precipitation and temperature data to detect, monitor and analyze different drought types and impacts in the context of global warming. The mathematical calculations used for SPEI are similar to the Standard Precipitation Index (SPI), but it has the advantage to include the role of evapotranspiration.	Vicente-Serrano, S. M., Beguería, S., & López- Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
1.6 - Projected Change in Drought Occurrence (by ~2050) (score)	3.00	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) . A drought threshold for pre-industrial conditions was calculated based on time-series averages. Results are expressed in terms of relative change (%) in probability between pre- industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming-simulation protocol of the Inter- Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
1.6 - Projected Change in Drought Occurrence (by ~2050) (rank)	74	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) . A drought threshold for pre-industrial conditions was calculated based on time-series averages. Results are expressed in terms of relative change (%) in probability between pre- industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming-simulation protocol of the Inter- Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
2.1 - Estimated Flood Occurrence (score)	4.65	This risk indicator is based on the recurrence of floods within the 34-year time frame period of 1985 to 2019. The occurrence of floods within a given location was estimated using data from Flood Observatory, University of Colorado. The Flood Observatory use data derived from a wide variety of news, governmental, instrumental, and remote sensing source.	Brakenridge, G. R. (2019). Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado.
2.1 - Estimated Flood Occurrence (rank)	13	This risk indicator is based on the recurrence of floods within the 34-year time frame period of 1985 to 2019. The occurrence of floods within a given location was estimated using data from Flood Observatory, University of Colorado. The Flood Observatory use data derived from a wide variety of news, governmental, instrumental, and remote sensing source.	Brakenridge, G. R. (2019). Global active archive of large flood events. Dartmouth Flood Observatory, University of Colorado.

Indicator	Value	Description	Source
2.2 - Projected Change in Flood Occurrence (by ~2050) (score)	2.84	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The magnitude of the flood event was defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre- industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming–simulation protocol of the Inter- Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
2.2 - Projected Change in Flood Occurrence (by ~2050) (rank)	57	This risk indicator is based on multi-model simulation that applies both global climate and drought models from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The magnitude of the flood event was defined based on 100-year return period for pre-industrial conditions. Results are expressed in terms of change (%) in probability between pre- industrial and 2°C scenarios.	Frieler, K., Lange, S., Piontek, F., Reyer, C. P., Schewe, J., Warszawski, L., & Geiger, T. (2017). Assessing the impacts of 1.5 C global warming-simulation protocol of the Inter- Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development.
3.1 - Surface Water Contamination Index (score)	3.21	The underlying data for this risk indicator is based on a broad suite of pollutants with well-documented direct or indirect negative effects on water security for both humans and freshwater biodiversity, compiled by Vörösmarty et al. (2010). The negative effects are specific to individual pollutants, ranging from impacts mediated by eutrophication such as algal blooms and oxygen depletion (e.g., caused by phosphorus and organic loading) to direct toxic effects (e.g., caused by pesticides, mercury). The overall Surface Water Contamination Index is calculated based on a range of key pollutants with different weightings according to the level of their negative effects on water security for both humans and freshwater biodiversity: soil salinization (8%), nitrogen (12%) and phosphorus (P, 13%) loading, mercury deposition (5%), pesticide loading (10%), sediment loading (17%), organic loading (as Biological Oxygen Demand, BOD; 15%),	Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555.

Indicator	Value	Description	Source
3.1 - Surface Water Contamination Index (rank)	79	The underlying data for this risk indicator is based on a broad suite of pollutants with well-documented direct or indirect negative effects on water security for both humans and freshwater biodiversity, compiled by Vörösmarty et al. (2010). The negative effects are specific to individual pollutants, ranging from impacts mediated by eutrophication such as algal blooms and oxygen depletion (e.g., caused by phosphorus and organic loading) to direct toxic effects (e.g., caused by pesticides, mercury). The overall Surface Water Contamination Index is calculated based on a	Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555.
		range of key pollutants with different weightings according to the level of their negative effects on water security for both humans and freshwater biodiversity: soil salinization (8%), nitrogen (12%) and phosphorus (P, 13%) loading, mercury deposition (5%), pesticide loading (10%), sediment loading (17%), organic loading (as Biological Oxygen Demand, BOD; 15%), potential acidification (9%), and thermal alteration (11%).	
4.1 - Fragmentation Status of Rivers (score)	3.14	This risk indicator is based on the data set by Grill et al. (2019) mapping the world's free-flowing rivers. Grill et al. (2019) compiled a geometric network of the global river system and associated attributes, such as hydro-geometric properties, as well as pressure indicators to calculate an integrated connectivity status index (CSI). While only rivers with high levels of connectivity in their entire length are classified as free-flowing, rivers of CSI < 95% are considered as fragmented at a certain degree.	Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & Macedo, H. E. (2019). Mapping the world's free-flowing rivers. Nature, 569(7755), 215.
4.1 - Fragmentation Status of Rivers (rank)	47	This risk indicator is based on the data set by Grill et al. (2019) mapping the world's free-flowing rivers. Grill et al. (2019) compiled a geometric network of the global river system and associated attributes, such as hydro-geometric properties, as well as pressure indicators to calculate an integrated connectivity status index (CSI). While only rivers with high levels of connectivity in their entire length are classified as free-flowing, rivers of CSI < 95% are considered as fragmented at a certain degree.	Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., & Macedo, H. E. (2019). Mapping the world's free-flowing rivers. Nature, 569(7755), 215.
4.2 - Catchment Ecosystem Services Degradation Level (tree cover loss) (score)	3.96	For this risk indicator, tree cover loss was applied as a proxy to represent catchment ecosystem services degradation since forests play an important role in terms of water regulation, supply and pollution control. The forest cover data is based on Hansen et al.'s global Landsat data at a 30-meter spatial resolution to characterize forest cover and change. The authors defined trees as vegetation taller than 5 meters in height, and forest cover loss as a stand-replacement disturbance, or a change from a forest to non-forest state, during the period 2000 – 2018.	Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.

Indicator	Value	Description	Source
4.2 - Catchment Ecosystem Services Degradation Level (tree cover loss) (rank)	21	For this risk indicator, tree cover loss was applied as a proxy to represent catchment ecosystem services degradation since forests play an important role in terms of water regulation, supply and pollution control. The forest cover data is based on Hansen et al.'s global Landsat data at a 30-meter spatial resolution to characterize forest cover and change. The authors defined trees as vegetation taller than 5 meters in height, and forest cover loss as a stand-replacement disturbance, or a change from a forest to non-forest state, during the period 2000 – 2018.	Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., & Kommareddy, A. (2013). High-resolution global maps of 21st-century forest cover change. science, 342(6160), 850-853.
4.3 - Projected Impacts on Freshwater Biodiversity (score)	2.07	The study by Tedesco et al. (2013) to project changes [% increase or decrease] in extinction rate by ~2090 of freshwater fish due to water availability loss from climate change is used as a proxy to estimate the projected impacts on freshwater biodiversity.	Tedesco, P. A., Oberdorff, T., Cornu, J. F., Beauchard, O., Brosse, S., Dürr, H. H., & Hugueny, B. (2013). A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 50(5), 1105-1115.
4.3 - Projected Impacts on Freshwater Biodiversity (rank)	111	The study by Tedesco et al. (2013) to project changes [% increase or decrease] in extinction rate by ~2090 of freshwater fish due to water availability loss from climate change is used as a proxy to estimate the projected impacts on freshwater biodiversity.	Tedesco, P. A., Oberdorff, T., Cornu, J. F., Beauchard, O., Brosse, S., Dürr, H. H., & Hugueny, B. (2013). A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 50(5), 1105-1115.
5.1 - Freshwater Policy Status (SDG 6.5.1) (score)	2.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Policy" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.1 - Freshwater Policy Status (SDG 6.5.1) (rank)	110	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Policy" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.2 - Freshwater Law Status (SDG 6.5.1) (score)	2.00	 This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Law(s)" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM. 	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.

Indicator	Value	Description	Source
5.2 - Freshwater Law Status (SDG 6.5.1) (rank)	111	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National Water Resources Law(s)" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.3 - Implementation Status of Water Management Plans (SDG 6.5.1) (score)	3.00	 This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National IWRM plans" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM. 	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
5.3 - Implementation Status of Water Management Plans (SDG 6.5.1) (rank)	55	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "National IWRM plans" indicator, which corresponds to one of the three national level indicators under the Enabling Environment category. For SDG 6.5.1, enabling environment depicts the conditions that help to support the implementation of IWRM, which includes legal and strategic planning tools for IWRM.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
6.1 - Corruption Perceptions Index (score)	4.00	This risk Indicator is based on the latest Transparency International's data: the Corruption Perceptions Index 2018. This index aggregates data from a number of different sources that provide perceptions of business people and country experts on the level of corruption in the public sector.	Transparency International (2019). Corruption Perceptions Index 2018. Berlin: Transparency International.
6.1 - Corruption Perceptions Index (rank)	25	This risk Indicator is based on the latest Transparency International's data: the Corruption Perceptions Index 2018. This index aggregates data from a number of different sources that provide perceptions of business people and country experts on the level of corruption in the public sector.	Transparency International (2019). Corruption Perceptions Index 2018. Berlin: Transparency International.
6.2 - Freedom in the World Index (score)	5.00	This risk indicator is based on Freedom House (2019), an annual global report on political rights and civil liberties, composed of numerical ratings and descriptive texts for each country and a select group of territories. The 2019 edition involved more than 100 analysts and more than 30 advisers with global, regional, and issue-based expertise to covers developments in 195 countries and 14 territories from January 1, 2018, through December 31, 2018.	Freedom House (2019). Freedom in the world 2019. Washington, DC: Freedom House.

Indicator	Value	Description	Source
6.2 - Freedom in the World Index (rank)	11	This risk indicator is based on Freedom House (2019), an annual global report on political rights and civil liberties, composed of numerical ratings and descriptive texts for each country and a select group of territories. The 2019 edition involved more than 100 analysts and more than 30 advisers with global, regional, and issue-based expertise to covers developments in 195 countries and 14 territories from January 1, 2018, through December 31, 2018.	Freedom House (2019). Freedom in the world 2019. Washington, DC: Freedom House.
6.3 - Business Participation in Water Management (SDG 6.5.1) (score)	4.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Business Participation in Water Resources Development, Management and Use" indicator, which corresponds to one of the six national level indicators under the Institutions and Participation category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
6.3 - Business Participation in Water Management (SDG 6.5.1) (rank)	8	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Business Participation in Water Resources Development, Management and Use" indicator, which corresponds to one of the six national level indicators under the Institutions and Participation category.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
7.1 - Management Instruments for Water Management (SDG 6.5.1) (score)	3.00	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Sustainable and efficient water use management" indicator, which corresponds to one of the five national level indicators under the Management Instruments category. For SDG 6.5.1, management instruments refer to the tools and activities that enable decision-makers and users to make rational and informed choices between alternative actions.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
7.1 - Management Instruments for Water Management (SDG 6.5.1) (rank)	35	This risk indicator is based on SDG 6.5.1. Degree of IWRM Implementation "Sustainable and efficient water use management" indicator, which corresponds to one of the five national level indicators under the Management Instruments category. For SDG 6.5.1, management instruments refer to the tools and activities that enable decision-makers and users to make rational and informed choices between alternative actions.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.

Indicator	Value	Description	Source
7.2 - Groundwater Monitoring Data Availability and Management (score)	3.00	This risk indicator is based on the data set by UN IGRAC (2019) to determine the level of availability of groundwater monitoring data at country level as groundwater management decisions rely strongly on data availability. The level of groundwater monitoring data availability for groundwater management is determined according to a combination of three criteria developed by WWF and IGRAC: 1) Status of country groundwater monitoring programme, 2) groundwater data availability for NGOs and 3) Public access to processed groundwater monitoring data.	UN IGRAC (2019). Global Groundwater Monitoring Network GGMN Portal. UN International Groundwater Resources Assessment Centre (IGRAC).
7.2 - Groundwater Monitoring Data Availability and Management (rank)	36	This risk indicator is based on the data set by UN IGRAC (2019) to determine the level of availability of groundwater monitoring data at country level as groundwater management decisions rely strongly on data availability. The level of groundwater monitoring data availability for groundwater management is determined according to a combination of three criteria developed by WWF and IGRAC: 1) Status of country groundwater monitoring programme, 2) groundwater data availability for NGOs and 3) Public access to processed groundwater monitoring data.	UN IGRAC (2019). Global Groundwater Monitoring Network GGMN Portal. UN International Groundwater Resources Assessment Centre (IGRAC).
7.3 - Density of Runoff Monitoring Stations (score)	3.89	The density of monitoring stations for water quantity was applied as proxy to develop this risk indicator. The Global Runoff Data Base was used to estimate the number of monitoring stations per 1000km2 of the main river system (data base access date: May 2018).	BfG (2019). Global Runoff Data Base. German Federal Institute of Hydrology (BfG).
7.3 - Density of Runoff Monitoring Stations (rank)	61	The density of monitoring stations for water quantity was applied as proxy to develop this risk indicator. The Global Runoff Data Base was used to estimate the number of monitoring stations per 1000km2 of the main river system (data base access date: May 2018).	BfG (2019). Global Runoff Data Base. German Federal Institute of Hydrology (BfG).
8.1 - Access to Safe Drinking Water (score)	2.00	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000- 2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.1 - Access to Safe Drinking Water (rank)	72	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000- 2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.2 - Access to Sanitation (score)	3.00	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000- 2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.

Indicator	Value	Description	Source
8.2 - Access to Sanitation (rank)	71	This risk indicator is based on the Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (UNICEF/WHO) 2019 data. It provides estimates on the use of water, sanitation and hygiene by country for the period 2000-2017.	WHO & UNICEF (2019). Estimates on the use of water, sanitation and hygiene by country (2000- 2017). Joint Monitoring Programme for Water Supply, Sanitation and Hygiene.
8.3 - Financing for Water Resource Development and Management (SDG 6.5.1) (score)	3.00	This risk indicator is based on the average 'Financing' score of UN SDG 6.5.1. Degree of IWRM Implementation database. UN SDG 6.5.1 database contains a category on financing which assesses different aspects related to budgeting and financing made available and used for water resources development and management from various sources.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
8.3 - Financing for Water Resource Development and Management (SDG 6.5.1) (rank)	72	This risk indicator is based on the average 'Financing' score of UN SDG 6.5.1. Degree of IWRM Implementation database. UN SDG 6.5.1 database contains a category on financing which assesses different aspects related to budgeting and financing made available and used for water resources development and management from various sources.	UN Environment (2018). Progress on integrated water resources management. Global baseline for SDG 6 Indicator 6.5.1: degree of IWRM implementation.
9.1 - Cultural Diversity (score)	4.00	Water is a social and cultural good. The cultural diversity risk indicator was included in order to acknowledge that businesses face reputational risk due to the importance of freshwater for indigenous and traditional people in their daily life, religion and culture. This risk indicator is based on Oviedo and Larsen (2000) data set, which mapped the world's ethnolinguistic groups onto the WWF map of the world's ecoregions. This cross-mapping showed for the very first time the significant overlap that exists between the global geographic distribution of biodiversity and that of linguistic diversity.	Oviedo, G., Maffi, L., & Larsen, P. B. (2000). Indigenous and traditional peoples of the world and ecoregion conservation: An integrated approach to conserving the world's biological and cultural diversity. Gland: WWF (World Wide Fund for Nature) International.
9.1 - Cultural Diversity (rank)	17	Water is a social and cultural good. The cultural diversity risk indicator was included in order to acknowledge that businesses face reputational risk due to the importance of freshwater for indigenous and traditional people in their daily life, religion and culture. This risk indicator is based on Oviedo and Larsen (2000) data set, which mapped the world's ethnolinguistic groups onto the WWF map of the world's ecoregions. This cross-mapping showed for the very first time the significant overlap that exists between the global geographic distribution of biodiversity and that of linguistic diversity.	Oviedo, G., Maffi, L., & Larsen, P. B. (2000). Indigenous and traditional peoples of the world and ecoregion conservation: An integrated approach to conserving the world's biological and cultural diversity. Gland: WWF (World Wide Fund for Nature) International.
10.1 - Freshwater Endemism (score)	3.44	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Companies operating in basins with higher number of endemic fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.

Indicator	Value	Description	Source
10.1 - Freshwater Endemism (rank)	113	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Companies operating in basins with higher number of endemic fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
10.2 - Freshwater Biodiversity Richness (score)	4.46	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Count of fish species is used as a representation of freshwater biodiversity richness. Companies operating in basins with higher number of fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
10.2 - Freshwater Biodiversity Richness (rank)	42	The underlying data set for this risk indicator comes from the Freshwater Ecoregions of the World (FEOW) 2015 data developed by WWF and TNC. Count of fish species is used as a representation of freshwater biodiversity richness. Companies operating in basins with higher number of fish species are exposed to higher reputational risks.	WWF & TNC (2015). Freshwater Ecoregions of the World.
11.1 - National Media Coverage (score)	4.00	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware local residents typically are of water-related issues due to national media coverage. The status of the river basin (e.g., scarcity and pollution) is taken into account, as well as the importance of water for livelihoods (e.g., food and shelter).	WWF & Tecnoma (TYPSA Group)
11.1 - National Media Coverage (rank)	16	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware local residents typically are of water-related issues due to national media coverage. The status of the river basin (e.g., scarcity and pollution) is taken into account, as well as the importance of water for livelihoods (e.g., food and shelter).	WWF & Tecnoma (TYPSA Group)
11.2 - Global Media Coverage (score)	4.00	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware people are of water- related issues due to global media coverage. Familiarity to and media coverage of the region and regional water-related disasters are taken into account.	WWF & Tecnoma (TYPSA Group)
11.2 - Global Media Coverage (rank)	9	This risk indicator is based on joint qualitative research by WWF and Tecnoma (Typsa Group). It indicates how aware people are of water- related issues due to global media coverage. Familiarity to and media coverage of the region and regional water-related disasters are taken into account.	WWF & Tecnoma (TYPSA Group)

Indicator	Value	Description	Source
12.1 - Conflict News Events (RepRisk) (score)	4.00	This risk indicator is based on 2018 data collected by RepRisk on counts and registers of documented negative incidents, criticism and controversies that can affect a company's reputational risk. These negative news events are labelled per country and industry class.	RepRisk & WWF (2019). Due diligence database on ESG and business conduct risks. RepRisk.
12.1 - Conflict News Events (RepRisk) (rank)	10	This risk indicator is based on 2018 data collected by RepRisk on counts and registers of documented negative incidents, criticism and controversies that can affect a company's reputational risk. These negative news events are labelled per country and industry class.	RepRisk & WWF (2019). Due diligence database on ESG and business conduct risks. RepRisk.
12.2 - Hydro-political Risk (score)	2.21	This risk indicator is based on the assessment of hydro-political risk by Farinosi et al. (2018). More specifically, it is based on the results of spatial modelling by Farinosi et al. (2018) that determined the main parameters affecting water cross-border conflicts and calculated the likelihood of hydro-political issues.	Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., De Roo, A., & Bidoglio, G. (2018). An innovative approach to the assessment of hydro-political risk: A spatially explicit, data driven indicator of hydro- political issues. Global environmental change, 52, 286-313.
12.2 - Hydro-political Risk (rank)	100	This risk indicator is based on the assessment of hydro-political risk by Farinosi et al. (2018). More specifically, it is based on the results of spatial modelling by Farinosi et al. (2018) that determined the main parameters affecting water cross-border conflicts and calculated the likelihood of hydro-political issues.	Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., Carmona-Moreno, C., De Roo, A., & Bidoglio, G. (2018). An innovative approach to the assessment of hydro-political risk: A spatially explicit, data driven indicator of hydro- political issues. Global environmental change, 52, 286-313.
Population, total (#)	92701100	Population, total	The World Bank 2018, Data , hompage accessed 20/04/2018
GDP (current US\$)	205276172135	GDP (current US\$)	The World Bank 2018, Data , hompage accessed 20/04/2018
EPI 2018 score (0-100)	0.00	Environmental Performance Index	
WGI -Voice and Accountability (0-100)	51.43	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132

Indicator	Value	Description	Source
WGI -Political stability no violence (0-100)	9.85	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Government Effectiveness (0-100)	52.88	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Regulatory Quality (0-100)	35.10	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Rule of Law (0-100)	57.21	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132
WGI - Control of Corruption (0-100)	41.83	Water Governance Indicator	Kaufmann, Daniel and Kraay, Aart and Mastruzzi, Massimo, The Worldwide Governance Indicators: Methodology and Analytical Issues (September 2010). World Bank Policy Research Working Paper No. 5430. Available at SSRN: https://ssrn.com/abstract=1682132

Indicator	Value	Description	Source
WRI BWS all industries (0-5)	1.01	WRI Baseline Water Stress (BWS)	Gassert, F., P. Reig, T. Luo, and A. Maddocks. 2013. "Aqueduct country and river basin rankings: a weighted aggregation of spatially distinct hydrological indicators." Working paper. Washington, DC: World Resources Institute, December 2013. Available online at http://wri.org/publication/aqueduct-country- river-basin-rankings.
WRI BWS Ranking (1=very high)	115	WRI Baseline Water Stress (BWS)	Gassert, F., P. Reig, T. Luo, and A. Maddocks. 2013. "Aqueduct country and river basin rankings: a weighted aggregation of spatially distinct hydrological indicators." Working paper. Washington, DC: World Resources Institute, December 2013. Available online at http://wri.org/publication/aqueduct-country- river-basin-rankings.
Baseline Water Stress (BWS) - 2020 BAU (1=very high)	95	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2020 Optimistic (increasing rank describes lower risk)	96	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2020 Pessimistic (increasing rank describes lower risk)	95	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.

Indicator	Value	Description	Source
Baseline Water Stress (BWS) - 2030 BAU (increasing rank describes lower risk)	97	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2030 Optimistic (increasing rank describes lower risk)	98	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2030 Pessimistic (increasing rank describes lower risk)	98	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 BAU (increasing rank describes lower risk)	107	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 Optimistic (increasing rank describes lower risk)	104	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.
Baseline Water Stress (BWS) - 2040 Pessimistic (increasing rank describes lower risk)	107	WRI country ranking	Luo, T., R. Young, and P. Reig. 2015. "Aqueduct projected water stress rankings." Technical note. Washington, DC: World Resources Institute, August 215. Available online at http://www.wri.org/publication/aqueduct- projected-water-stress-country-rankings.

Indicator	Value	Description	Source
Total water footprint of national consumption (m3/a/cap)	1058.46	WFN Water Footprint Data	Mekonnen, M.M. and Hoekstra, A.Y. (2011) National water footprint accounts: The green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands.http://www.waterfootprint.org/Rep orts/Report50-NationalWaterFootprints-Vol1.pdf
Ratio external / total water footprint (%)	6.50	WFN Water Footprint Data	Mekonnen, M.M. and Hoekstra, A.Y. (2011) National water footprint accounts: The green, blue and grey water footprint of production and consumption, Value of Water Research Report Series No. 50, UNESCO-IHE, Delft, the Netherlands.http://www.waterfootprint.org/Rep orts/Report50-NationalWaterFootprints-Vol1.pdf
Area equipped for full control irrigation: total (1000 ha)	4585.00	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Area equipped for irrigation: total (1000 ha)	4585.00	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
% of the area equipped for irrigation actually irrigated (%)	100.00	Aquastat - Irrigation	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Electricity production from hydroelectric sources (% of total)	41.55	World Development Indicators	The World Bank 2018, Data , hompage accessed 20/04/2018
Total internal renewable water resources (IRWR) (10^9 m3/year)	359.40	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Total internal renewable water resources (IRWR) (10^9 m3/year)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Water resources: total external renewable (10^9 m3/year)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13

Indicator	Value	Description	Source
Total renewable water resources (10^9 m3/year)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Dependency ratio (%)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
Total renewable water resources per capita (m3/inhab/year)	0.00	Aquastat - Water Ressources	FAO. 2016. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Website accessed on 2018/04/13
World happiness [0-8]	5.10	WorldHappinessReport.org	World Happiness Report, homepage accessed 20/04/2018

Country Aspects

1. PHYSICAL ASPECTS

1.1.WATER RESOURCES

1.1.1.WATER RESOURCES

There are 16 river basins larger than 2,000km2, 9 of which are considered major rivers, each with a catchment area larger than 10,000km2. These nine major basins are the Bang-Ky Cung, Red River/Thai Binh, Ma, Ca, Thu Bon, Ba, Dong Nai and the Mekong Delta. Other basins are either small in area (the Tien Yen and Muc) or have several small rivers grouped together, such as the Giang/Huong, Tra Khuc and Cai-Luy. The nine major basins represent 80 per cent of the country's area and 70 per cent of its water resources. The largest basins are the Mekong and the Red River/Thai Binh, covering half of the country's territory.

Vietnam has abundant surface water resources in terms of total runoff, of which the Red and Mekong rivers carry 75 per cent, while each of the other basins carries 1-3 per cent. The mean annual runoff totals approximately 878km3/yr, of which about 354km3/yr (40 per cent) is generated within the country (corresponding to a runoff coefficient of 0.5).

About 60 per cent of the total flow in Vietnam originates outside the country. More than 90 per cent of the Mekong basin lies outside Vietnam. Half of the Red River basin lies outside the country. The Ma and Ca rivers both have about 40 per cent of their basin area outside the country and the Dong Nai has 15 per cent of the basin area outside the country. The contribution from neighbouring countries to the runoff in Vietnam is estimated at 524.7km3/yr, including 470.1km3/yr (Mekong) and 1.4km3/yr (Dong Nai) from Cambodia, 44.1km3/yr (Red) from China and 9.1km3/yr (Ca and Ma) from Lao PDR.

The distribution of water resources in the country during the year is highly variable due to unevenly distributed monsoon rainfalls. High variations combined with limited storage and flood control infrastructure result in devastating floods in the wet season and extreme low flows in the dry season. About 70-75 per cent of the annual runoff is generated in three to four months.

The groundwater recharge in the country is estimated at 48km3/yr. Over 50 per cent of these resources are in the central part, about 40 per cent in the north and 10 per cent in the south. A large amount of water is stored in unconsolidated alluvial sand and gravel geological formations found in plains and valleys. A substantial part of these resources (estimated at 35km3/yr) returns to the rivers as base flow. The exploitable reserves (the volumes of flows of satisfactory quality which can be extracted economically given the present technology) are estimated at about 6-7km3/yr.

The total annual water withdrawal for agriculture, industries and domestic purposes was estimated at 54.3km3 in 1990. The total domestic demand in 1990 was estimated at 2.0km3/yr for both urban and rural consumers. This volume for domestic water use was estimated at 1.3km3 in 1980 and was expected to reach 2.9km3 by 2000. National industrial demand was 1.5km3 in 1980, rising to 5.3km3 in 1990. It was expected to reach 16.0km3 in 2000. In 1980, agriculture used 35.0km3 of water. In 1990, agricultural water withdrawal was estimated at 47.0km3, or 86.5 per cent of the total water demand, of which some 6.5 million m3 was for livestock. The estimated water demand for agricultural purposes for 2000 was 60.5km3.

It is estimated that 1.46 per cent of Vietnam's water demand is met by groundwater. The balance comes from surface water sources such as rivers, lakes and reservoirs. Groundwater is mainly used for domestic water supply in urban areas.

To date, no treatment facilities have been available in plants, factories and sewer systems before wastes are discharged into water bodies. In Hanoi, 300,000m3 of wastewater is discharged into the rivers per day.

1.2. WATER QUALITY, ECOSYSTEMS AND HUMAN HEALTH

Major environmental problems are:

-logging and slash-and-burn agricultural practices, which contribute to deforestation and soil degradation;

-water pollution and overfishing, which threaten marine life populations;

-groundwater contamination, which limits potable water supply

-growing urban industrialization and population migration, which are rapidly degrading the environment in Hanoi and Ho Chi Minh City.

There is increasing evidence of pollution of Vietnam's surface, ground and coastal waters. Although the quality of upstream river waters is generally good, downstream sections of major rivers reveal poor water quality and most of the lakes and canals in urban areas are fast becoming sewage sinks. Groundwater shows pockets of contamination and some salinity intrusion. Rapid urbanization and industrialization in coastal areas, port and marine transport development, expansion in coastal tourism, and an increase in the number of oil spills contribute to the deterioration of coastal water quality.

2. GOVERNANCE ASPECTS

2.1.WATER INSTITUTIONS

The Ministry of Water Resources (MWR) is the main body charged with setting policy, and responsible for the planning, management and allocation of water resources at the central level. The MWR is responsible for constructing canals for schemes larger than 150ha, while the

1.1.2.WATER USE

provinces are responsible for developing smaller schemes.

Several divisions of the MWR are particularly important for agricultural water control. The Institute of Water Resources Planning prepares national plans, policies, objectives and strategies for water resources management and development which are used as guidelines by the provinces. It also prepares prioritized lists of investment projects for consideration by the state planning committees.

The Office of Irrigation and Drainage Management oversees the management of irrigation and drainage structures, develops policy guidance, produces operations and maintenance guidelines and collects data. It operates one national irrigation scheme in Dau Tieng, and interacts with other schemes through provincial or regional Irrigation and Drainage Management Committees and Provincial Peoples Committees.

The Vietnamese Hydraulic Investigation and Design Company is the technical design arm of the MWR.

The Construction Management Department, financially autonomous since 1994, develops procurement and construction management policies and guidelines for the water resources sector and monitors the activities of construction enterprises building MWR schemes.

There are a number of other institutions involved with irrigation planning and management, such as the Ministry of Science, Technology and Environment, which formulates environmental policies, including water-related issues.

The General Department for Meteorology and Hydrology undertakes surveying and hydrographic data collection and monitoring.

The Ministry of Energy manages electricity generation, transmission, and distribution for uses including irrigation pumping.

2.2.WATER MANAGEMENT

The government has indicates an accelerated growth rate of 4.5-5 per cent for the agriculture sector. Other targets include reducing the number of very poor people by 50 per cent, reducing malnutrition among children to less than 30 per cent, and providing clean drinking water to all the urban population and 80 per cent of the rural population. About 40 per cent of the investment needed is projected to come from the government, 15 per cent from state enterprise and the rest from the private sector. The main items in the public investment programme are transport and water supply (33 per cent), and irrigation and agriculture (24 per cent).

The Ministry of Agriculture and Rural Development (MARD) has prepared a programme for rural development, which complements and builds on the strategy for the agriculture sector. The major objectives of this programme are to raise incomes and living standards in rural areas; diversify the rural economy through increased production of high value crops; and conserve the natural resource base, particularly land and water.

For 2010, the main targets are to raise GDP per capita in rural areas to US\$1,000, irrigate 80 per cent of all cultivated land, increase forested areas, and raise food production to 40-45 million tonnes.

The Mekong Delta water resources development project is expected to finance integrated water resources development, including irrigation, drainage, saline intrusion control, navigation, rural water supply and agricultural diversification, in three geographical areas (South Manh Thit, Omon-Xano and Quanlo-Phunghiep) covering five delta provinces.

2.3. WATER POLICY AND LEGAL FRAMEWORK

The broadest level of national policy and strategy development is provided in the Socio-Economic Development Strategy for 2001-2010. A number of water-related strategies /objectives are presented here.

The water sector has no overall integrated strategy and action plan at the national or regional basin level; however, strategies and action plans exist for a number of the sub-sectors:

-Water Resources Development Plan to the year 2000 and Tentative Development Plan to the year 2010 (MARD, June 1998);

-Direction and Duties of Water Resources Development to the Year 2010 (MARD, September 1999); -Strengthening Environmental Protection in the Period of National Industrialization and Modernization (Communist Party of Vietnam, Directive No. 36/CT-TW, 1998);

-Strategy for Rural Agriculture Development in the Industrialization and Modernization Period to the Year 2010 (MARD, July 2000);

-Agriculture and Rural Development Plan (2001-2005) (MARD, August 2000);

-National Strategy for Rural Water Supply and Sanitation (NRWSS);

-Second National Strategy and Action Plan for Disaster Mitigation and Management in Vietnam 2001 to 2020 (MARD and Central Committee for Flood and Storm Control, December 2001).

Key legislation on Water Resources is:

-Law on Water Resources (20 May 1998);

-Decree 179/1999/ND-CP of 10 July 1999 on implementing the Law on Water Resources;

-Ordinance on prevention, combat against floods and typhoons (1993);

-Supplement and amendment ordinance on prevention, combat against floods and typhoons (2000);

-Decree 67/2003 of 13 June 2003 on fees for wastewater;

-Directive 200/TTg of the Prime Minister dated 29 April 1994 on guaranteeing clean water and rural environmental sanitation;

-Directive 487/TTg of the Prime Minister dated 30 July 1996 on enhancement of state management of water resources;

-Decision 327/CT of 15 September 1992 on policies for the use of bare land, denuded hills, forests, alluvial flats and water bodies;

-Decision 860/TTg of the Prime Minister dated 30 December 1995 on functions, responsibilities, powers and organizational machinery of Vietnam Mekong Committee;

-Decision 299/TTg of the Prime Minister dated 13 May 1996 on establishment of the Central Guidance Board of prevention, combat against floods and typhoons;

-Decision 63/QD-TTg of the Prime Minister dated 18 March 1998 on national orientation on water

supply development in urban areas by 2020;

-Decision 155/1999/QD-TTg of the Prime Minister dated 16 July 1999 on issuing regulation of hazardous waste management (including hazardous wastewater);

-Decision 35/1999/QD-TTg dated 5 March 1999 on national orientation on drainage development in urban areas by 2020;

-Decision 67/2000/QD-TTg of the Prime Minister dated 15 June 2000 on establishment of the National Water Resources Council;

-Decision 104/2000/QD-TTG dated 25 August 2000 on National Strategy on Clean Water and Environmental Sanitation in Rural Areas;

-Decision 99/2001/QD-TTG of the Prime Minister on issuing regulation on organization and operation of National Water Resources Council;

-Decision 357 of MARD dated 13 March 1997 on issuing temporary regulation of implementation of regimes of licence and permit for searching, exploring, exploiting and drilling groundwater and registration of groundwater exploitation works;

-Decision 37, 38, 39/2001/QD/BNN-TCCB of MARD dated 9 April 2001 on establishment of boards for river basin planning and management of Mekong, Dong Nai, Thai Binh and Red rivers;

-Decree 162/2003/ND-CP on regulation on collecting, managing, exploiting and using of water resources information;

-Decision 05-2003/QD-BTNMT of the Ministry of Natural Resources and Environment on licensing of surveying and exploiting of underground water resources.

3. GEOPOLITICAL ASPECTS

Vietnam is a downstream state for most of its transboundary rivers. Six major rivers cross international boundaries. The Bang-Ky Cung and Red rivers are shared with China; the Ma and Ca cross from Lao PDR; and the Dong Nai and Mekong cross the Cambodian border. Most of the rivers flow to the Gulf of Tonkin and the South China Sea. Two exceptions are the Bang-Ky Cung, which drains to China, and the Srepok, which drains to the Mekong in Cambodia.

The 1995 agreement established by the four lower Mekong countries offers new opportunities for regional collaboration in developing the basin's resources (water and related ecological resources).